Regulated deadenylation in vitro.

نویسندگان

  • Aaron C Goldstrohm
  • Brad A Hook
  • Marvin Wickens
چکیده

The 3'-poly(A) tail, found on virtually all mRNAs, is enzymatically shortened by a process referred to as "deadenylation." Deadenylation is a widespread means of controlling mRNA stability and translation. The enzymes involved-so-called deadenylases-are surprisingly diverse. They are controlled by RNA sequences commonly found in 3'-untranslated regions (UTRs), which bind regulatory factors. Both RNA-binding proteins and microRNAs accelerate deadenylation of specific mRNAs. In some cases, regulators enhance deadenylation by binding to and recruiting specific deadenylases to the target mRNA. The many hundreds of potential regulators encoded in mammalian genomes (both RNA-binding proteins and microRNAs) and the numerous deadenylases, coupled with the many potential regulatory sites represented in 3' UTRs of mRNAs, provide fertile ground for regulated deadenylation. Recent global studies of poly(A) regulation support this conclusion. Biochemical and genetic approaches will be essential for exploring regulated deadenylation. The methods we describe focus on the reconstruction in vitro of regulated deadenylation with purified components from yeast. We discuss broadly the strategies, problems, and history of in vitro deadenylation systems. We combine this with a more detailed discussion of the purification, activity, and regulation of the Saccharomyces cerevisiae Ccr4p-Pop2p deadenylase complex and its regulation by PUF (Pumilio and Fem-3 binding factor) RNA-binding proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PUF protein-mediated deadenylation is catalyzed by Ccr4p.

PUF proteins control gene expression by binding to the 3'-untranslated regions of specific mRNAs and triggering mRNA decay or translational repression. Here we focus on the mechanism of PUF-mediated regulation. The yeast PUF protein, Mpt5p, regulates HO mRNA and stimulates removal of its poly(A) tail (i.e. deadenylation). Mpt5p repression in vivo is dependent on POP2, a component of the cytopla...

متن کامل

The enzyme activities of Caf1 and Ccr4 are both required for deadenylation by the human Ccr4–Not nuclease module

In eukaryotic cells, the shortening and removal of the poly(A) tail (deadenylation) of cytoplasmic mRNA is a key event in regulated mRNA degradation. A major enzyme involved in deadenylation is the Ccr4-Not deadenylase complex, which can be recruited to its target mRNA by RNA-binding proteins or the miRNA repression complex. In addition to six non-catalytic components, the complex contains two ...

متن کامل

Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse

Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...

متن کامل

AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development.

To study the regulation of AUUUA-mediated RNA deadenylation and destabilization during Xenopus early development, we microinjected chimeric mRNAs containing Xenopus or mammalian 3' untranslated region (3'-UTR) sequences into Xenopus oocytes, mature eggs, or fertilized embryos. We found that the AU-rich elements (ARE) of Xenopus c-myc II and the human granulocyte-macrophage colony-stimulating fa...

متن کامل

Destabilization of microRNAs in human cells by 3′ deadenylation mediated by PARN and CUGBP1

MicroRNA-122 (miR-122), which is expressed at high levels in hepatocytes, is selectively stabilized by 3'-adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Here, we report that poly(A)-specific ribonuclease (PARN) is responsible for the deadenylation and destabilization of miR-122. The 3'-oligoadenylated variant of miR-122 was detected in Huh7 cells when PARN was down-regulated....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in enzymology

دوره 448  شماره 

صفحات  -

تاریخ انتشار 2008